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Machine Learning Enabled Design and Optimization for
3D-Printing of High-Fidelity Presurgical Organ Models

Eric S. Chen, Alaleh Ahmadianshalchi, Sonja S. Sparks, Chuchu Chen, Aryan Deshwal,
Janardhan R. Doppa,* and Kaiyan Qiu*

The development of a general-purpose machine learning algorithm capable of
quickly identifying optimal 3D-printing settings can save manufacturing time
and cost, reduce labor intensity, and improve the quality of 3D-printed objects.
Existing methods have limitations which focus on overall performance or one
specific aspect of 3D-printing quality. Here, for addressing the limitations, a
multi-objective Bayesian Optimization (BO) approach which uses a
general-purpose algorithm to optimize the black-box functions is
demonstrated and identifies the optimal input parameters of direct ink writing
for 3D-printing different presurgical organ models with intricate geometry.
The BO approach enhances the 3D-printing efficiency to achieve the best
possible printed object quality while simultaneously addressing the inherent
trade-offs from the process of pursuing ideal outcomes relevant to
requirements from practitioners. The BO approach also enables us to
effectively explore 3D-printing inputs inclusive of layer height, nozzle travel
speed, and dispensing pressure, as well as visualize the trade-offs between
each set of 3D-printing inputs in terms of the output objectives which consist
of time, porosity, and geometry precisions through the Pareto front.

1. Introduction

3D-printing has seen growing usage and innovation in recent
years, allowing both researchers and industrial engineers to
quickly convert customized designs to products,[1,2] which are
time-consuming and expensive to achieve through traditional
manufacturing. Many functional devices in different disciplines
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have been designed and manufactured
through 3D-printing, including presurgi-
cal organ models,[3,4] sensors,[5–7] biologi-
cal structures,[8] bone implantations,[9,10]

batteries,[11,12] wearable devices,[13,14]

assistive-devices,[15,16] and aerospace
parts.[17,18] Among the 3D-printing ap-
proaches, direct ink writing (DIW)[19]

can print a broad range of customizable
ink materials, enabling a wide spec-
trum of potential applications ranging
from surgical rehearsal[3,4] and health
monitoring[5–7] to shape changes with
external stimuli,[20,21] thermal/electric
conduction, and strength resistance.[22,23]

DIW stands as the most versatile form
of 3D-printing and involves the precise
extrusion of a material compound, layer
by layer, for structures requiring complex
geometries.[24,25]

Despite the rapid emergence of novel
applications in 3D-printing, the process
of selecting appropriate parameters for

3D-printing remains a labor-intensive and inefficient process.
This pertains to pivotal aspects such as identifying the optimal
material composition or printer configuration, as well as miti-
gating defects that occur during printing.[26] Specifically, there
are several considerable difficulties when trying to optimize the
critical parameters of 3D-printing to closely replicate real-world
object models by manipulating variables such as layer height,
dispensing pressure, and nozzle travel speed. These challenges
are particularly evident when fine-tuning the overall print qual-
ity, as several key issues arise in this context. First, the vast range
of available 3D-printing settings makes traditional trial-and-error
experimentation impractical as the sheer number of potential
combinations is overwhelming, and each trial is time and cost
ineffective. Second, assessing various 3D-printing design config-
urations against multiple quality criteria involves expensive test
prints and complex geometric calculations. Third, 3D-printing
settings must conform to stringent quality constraints, such as
the precision of shape and its porosity, necessitating laborious
verification processes. Lastly, the ideal 3D-printing settings often
vary depending on the desired output, whether it is a high-detail
figurine or a rapid prototype.

Existing methods for optimizing 3D-printing parameters have
limitations. They often concentrate on optimizing the printing’s
overall performance or focus on one specific aspect of print-
ing quality.[27] These methods primarily rely on experimental
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data from previous 3D-printing configurations documented in
the literature[28] or research records. However, they tend to over-
look variations in the print quality due to differences in print-
ing approaches, material types, and object geometries by focus-
ing on just one of these aspects. For instance, data from prior
3D-printing configurations for a cubical shape cannot be readily
applied to 3D-printing of a spherical object, given the significant
differences in printing parameter settings. Consequently, there
is a need for a general-purpose algorithm capable of identifying
optimal 3D-printing settings to achieve the best possible printed
object quality, regardless of the printing type, material, or shape
in use.

Incorporation of data-driven artificial intelligence and its sub-
set, machine learning (ML), enables us to expedite the pro-
cess of refining 3D-printing parameter settings by reducing
time and cost.[29] A multi-objective optimization (MOO) algo-
rithm has been used to discover optimal material formula-
tions and their individual trade-offs in 3D-printing.[30] In other
works, MOO algorithms have also been used to improve print
quality, printing performance, and the mechanical properties
of 3D-printed objects.[31–33] For biomaterial inks used in 3D-
printing,[34] random forest and deep learning algorithms, which
are branches of ML, have successfully predicted the printabil-
ity of varying bio-compounds.[35] Other ML methods including
convolutional neural network models, a form of deep learn-
ing, have commonly been used for defect detection and correc-
tion for 3D-printed objects due to their ability to automatically
learn and recognize specific features, such as pores or warped
areas, through pattern recognition within image datasets.[36–38]

In metal additive manufacturing, analysis of feature charac-
terization for fabricating desired microstructures[39] and melt
pool[40] characteristics has been achieved with ML identifica-
tion techniques. Moreover, reinforcement learning has been ap-
plied to DIW for achieving optimal material deposition through
modifying velocity and printing path inputs via a reward-based
system.[41]

Bayesian optimization (BO),[42,43] is a powerful ML technique
for optimizing complex, expensive, black-box objective func-
tions. It is often used in various science and engineering do-
mains. Some examples of BO usage in engineering include
optimizing analog circuit design,[44,45] aircraft design,[46] and
nanoporous material discovery.[47] Recently, BO for optimizing
a set of parameters through evaluating objective functions, has
been adapted for material science and 3D-printing.[29,48] Fused
deposition modeling (FDM), a heated extrusion-based form of
3D-printing that primarily uses plastic filaments, has seen usage
of an autonomous robot to find optimal printer configurations
using BO for desired single-layer feature accuracy.[49] However,
existing research on applying ML techniques to multi-layered fea-
tures is still limited, especially within the realm of DIW. Most ap-
plications aim for simple, single-layer prints with basic structures
and employ a single-objective optimization algorithm for individ-
ual attributes such as geometry or porosity. For instance, a set of
printing inputs with the most optimal time output may suffer in
geometry due to an exceedingly quick nozzle travel speed, though
the inverse can also hold true. Thus, it is important that multi-
ple input and output criteria are to be considered for optimizing
the 3D-printing process, as each property indirectly affects each
other.

In this work, we designed a principled methodology aimed at
identifying the optimal DIW 3D-printing input parameters for
manufacturing different presurgical organ (prostate and kidney)
models, with the application of multi-objective BO[50] designed
for optimizing black-box functions that are expensive to evalu-
ate in terms of physical resources. We seek to enhance the ef-
ficiency of the DIW process while concurrently addressing the
inherent trade-offs that arise in pursuit of ideal outcomes. BO,
unlike other ML techniques, enabled us to effectively explore the
input search space regarding possible parameters of layer height,
nozzle travel speed, and dispensing pressure. BO also enabled
the visualization of trade-offs between each set of printing in-
puts in terms of the output objectives comprising of time, poros-
ity, positive precision, and negative precision through the Pareto
front. The Pareto front is a set of optimal trade-off solutions or
input parameters that are dominant in their own regard due to
an advantage in a single or multiple output objective values. We
apply the BO algorithm to multi-layered 3D-printed organ mod-
els with intricate geometry, inclusive of a patient-specific prostate
model and a general-purpose kidney model, which introduces
a biomedical aspect that can be further explored. Our approach
yields a diverse set of DIW printing settings that strike a favorable
balance between all the objectives relevant to the practitioners’
requirements.

2. Results and Discussion

Our methodology for ML assisted 3D-printing is a four-step re-
cursive process, as depicted in Figure 1. The process consists of
the following four iterative steps, including 1) inputs generation
through a BO algorithm: this step includes BO algorithm devel-
opment and generation of different input parameters for printing
settings (layer height, nozzle travel speed, and dispensing pres-
sure); 2) 3D-printing process: this step applies customized poly-
meric inks and the DIW process for manufacturing presurgical
organ models (prostate and kidney); 3) imaging process: this step
detects and generates the digital geometries of the 3D-printed or-
gan models for a geometric assessment; and 4) outputs evalua-
tion: this step evaluates the output objective values from the 3D-
printed organ models, including time for 3D-printing, porosity
of the model (by mass), and geometrical precision.

We define the input space in three dimensions, specifically in-
cluding the parameters for layer height, nozzle travel speed, and
dispensing pressure. The respective ranges for each input dimen-
sion are as follows: layer height [0.26 mm, 0.61 mm], dispensing
pressure [98 kPa, 449 kPa], and nozzle travel speed [4 mm −1s,
15 mm −1s]. The preliminary step started with randomly generat-
ing four sets of input parameters (non-inclusive to the iterations),
and these generated values were based on our early data for print-
ing parameters using a customized silicone ink. The early data
were obtained through printing small cylinders (10 mm diame-
ter x 10 mm height) with acceptable geometries using the cus-
tomized silicone ink. The components of the silicone ink in this
study mainly included an active agent (silicone sealant) and bulk-
ing agent (silicone grease) with a weight ratio of 8:4.5, and the
ink showed a Young’s modulus of 407.5 kPa (Figure 2a), which
is close to the biological organ tissue.[51] These four input sets
served as the basis for setting printing parameters through the
Slic3r software, which sliced the stereolithography (STL) files of
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Figure 1. Flow-chart schematic of multi-objectiveBO assisted 3D-printing of presurgical organs models with three input parameters in tangent with four
output parameters. The cycle starts with generating input values based on the current dataset of inputs and corresponding outputs through BO, which
are used to produce printing pathways for direct-ink-writing (DIW). After the model is 3D-printed via DIW, image processing is applied to the model to
reconstruct a mesh object. The mesh object is then adjusted for comparisons with the ideal model for measurements regarding positive and negative
geometrical precisions. The time of model printing and porosity measurements are also calculated. Once all the output measurements are completed,
their individual values are re-entered into the BO algorithm to yield new input parameters.

the organ models and generated G-code to guide our customized
DIW 3D-printing system to fabricate the presurgical prostate and
kidney models (Figure 2b; Movies S1 and S2, Supporting Infor-
mation). The outputs were then evaluated during and after or-
gan model printing. While printing occurred, we measured the
entire printing duration to derive a time value for each model. Af-
ter the four organ models (prostate or kidney) were printed using
their initial four sets of inputs, image processing via Nvidia NeRF
software was applied to reconstruct a mesh object (Movie S3,
Supporting Information) for positive and negative precision val-
ues, which were calculated as an average distance between the
mesh and ideal geometries of the organ models. Positive preci-
sion represents the amount of ink that is over-extruded, while
negative precision represents the amount of ink that is under-
extruded during printing. Subsequently, we defined and calcu-
lated the porosity as a mass difference between the printed model
and ideal organ model. While the mass of printed model was
directly measured, whereas the mass of the ideal organ model
was calculated by the original STL model’s volume times the ink
density.

BO is a highly resource-efficient framework to solve global op-
timization problems using black-box evaluations of expensive ob-
jective functions. The key idea behind BO is to efficiently search
for the optimal input parameters x that optimize f(x), often re-
ferred to as the expensive black-box function. There are three key
components of the BO framework which decide the parameters
for the 3D printer in each iteration: 1) A surrogate model that
captures our beliefs, based on past observations, about the print-
ing parameters input-printed models output relationship; 2) An
acquisition function that measures the utility of evaluating a can-
didate printer setting for optimizing the corresponding black-box
objective function; and 3) An acquisition function optimizer that
selects which printer setting with highest utility to evaluate next.
In BO, Gaussian Processes (GPs)[52] are utilized as the under-
lying probabilistic surrogate models. GPs provide a flexible way

to model the uncertainty associated with the objective function
while being able to accurately estimate the objective function.
GPs are a powerful tool in ML and optimization that can be used
as surrogate models in various applications, including the 3D-
printing optimization problem.

In many real-world problems, when domain practitioners are
confronted with the challenge of balancing multiple, often con-
flicting objectives, the utilization of MOO is required. Unlike
single-objective optimization tasks, which focus on optimizing
a sole criterion, MOO becomes imperative when various as-
pects of the problem, such as accuracy, time, and precision,
must be considered simultaneously. These diverse objectives of-
ten entail finding trade-offs. In the 3D-printing problem, al-
tering different printing settings such as layer height, nozzle
travel speed, and dispensing pressure could affect the precision,
porosity, and printing duration of the printed shape in various
ways. For example, improving shape precision requires sacri-
ficing printing time and may lead to a higher porosity in the
shape. Consequently, MOO techniques are deployed to discover
a wide range of solutions, each representing a distinct trade-
off among these objectives, rather than a single optimal so-
lution. There are various algorithms proposed for solving the
MOO problem. Some of the recent work on MOO using BO in-
clude Max-value Entropy Search,[53] Multi-Objective Regionalized
BO,[54] Uncertainty-aware MOO,[55] and Expected Hypervolume
Improvement (EH).[56]

We meticulously curated this input space, encompassing
all conceivable combinations of these three decision variables,
within the operational scope of the printer. The 4 objectives
that we aim to optimize are printing time, shape porosity,
negative precision, and positive precision. The GP for each
objective function is defined using a Matern kernel with a
prior of 𝛾(3.0, 6.0) for the length scale and a prior of 𝛾(2.0,
0.15) for the output scale. Each experiment is initialized with 4
randomly selected initial points. The reference point for each
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Figure 2. Machine-learning enabled design and optimization for 3D-printing of presurgical organ models and geometric fidelity analysis. a) Stress-strain
correlation of the customized polymeric ink during mechanical compression test. b) 3D-printing the prostate and kidney models using a customized
polymeric ink and BO generated inputs as the printing parameters. c) Photograph of the 3D-printed prostate models from iterations 1, 22, and 46 in
chronological order to show growth in fidelity. d) Photograph of the 3D-printed kidney models from iterations 5, 27, and 52 in chronological order to
show growth in fidelity. e,f) Calibrated distance maps and histograms of the organ model’s external surfaces via 3D registration for geometric fidelity,
between the respective 3D-printed prostate and kidney models (seen in c and d) with the corresponding ideal models based on original STL files.

experiment is defined as the lower bound of each of the objective
functions.

The Pareto front is a set of non-dominated solutions, where
no solution is universally better than another; instead, each so-
lution represents a unique trade-off among the conflicting ob-
jectives. The mathematical definition clarifies that Pareto opti-
mality involves both non-inferiority (no solution is worse in all
objectives) and strict improvement (at least one objective is bet-
ter). The Pareto front selected by the algorithm includes printed
shapes that can be utilized in professional settings as they have
negligible errors compared to the real model. The hypervolume
indicator is a measure of how much of the objective space is dom-

inated by the Pareto front. A larger hypervolume indicates a better
set of solutions.

To verify the results of BO for 3D-printing, the initial 4 sets
of inputs and the corresponding 4 sets of outputs from the eval-
uations of the initial 4 printed models were imported into the
BO algorithm, to generate the first set of iteration inputs for
repeating the four-step recursive process (iteration 1). The pro-
cess was repeated for over 60 iterations of inputs and outputs for
the prostate (Figure 2c) and kidney (Figure 2d) models, and it
clearly indicates that with the increase of iteration numbers, the
geometries of organ models became smoother and more accu-
rate (Figure 2c,d). For the corresponding quantitative geometry
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fidelity, the calibrated distance maps of the external surfaces of
the prostate and kidney via 3D registration are represented in
Figure 2e,f. The results indicate the geometric differences be-
tween the 3D-printed organ models and the ideal models were
narrowed down significantly with the increase of iteration num-
bers. For the prostate model, the geometric differences were dis-
tributed through surface voxels: −3.7 mm to 1 mm with peak at
-1 mm (iteration 1), −1.5 mm to 1 mm with peak ≈0.2 mm (iter-
ation 22) and -1 mm to 1 mm with peak at 0 mm (iteration 46).
For the kidney model, the geometric differences were distributed
through surface voxels: −3.5 mm to 2.5 mm with peak at 0.5 mm
(iteration 5), −1.8 mm to 2.3 mm with peak at 1 mm (iteration
27) and -2 mm to 1.9 mm with peak at 0 mm (iteration 52).

Generally, the generated inputs demonstrated improved val-
ues across all the designated output areas as iterations in-
creased (Tables S1 and S2, Supporting Information). The prostate
model’s first iteration had recorded time, porosity, positive pre-
cision, and negative precision values of 67 mins, −1.776 g,
0.399 mm, −1.194 mm. It was observed that the positive preci-
sion value in the first iteration was decent (dimensions of prostate
and kidney models are 22.22 (L) x 20.66 (W) x 17.74 (H) mm3

and 29.85 (L) x 20.82 (W) x 12.37 (H) mm3 respectively), how-
ever this iteration’s remaining three output objectives were sig-
nificantly insufficient for obtaining an optimized printed model.
Upon reaching iteration 22, each output objective became more
desirable of time: 50 mins, porosity: −0.487 g, positive precision:
0.374 mm, and negative precision: −0.462 mm. These improve-
ments are attributed to adjustments made in input parameters
of the layer height and nozzle travel speed, leading to substantial
advancements in the reaming three output objectives. Finally, it-
eration 46 showcased considerable progress in all output objec-
tives with time: 43 mins, porosity: −0.033 g, positive precision:
0.184 mm, and negative precision: −0.303 mm. Similar trends
were seen among the kidney model’s growth as well. The mea-
surements at iteration 5 for the kidney were time: 90 mins, poros-
ity: −0.578 g, positive precision: 0.779 mm, and negative preci-
sion: −1.034 mm. Evidently, all four output objectives are insuf-
ficient for obtaining an optimized printed model. However, iter-
ation 52 showed that it completely dominated iteration 5 in ev-
ery area with time: 38 mins, porosity: −0.05 g, positive precision:
0.523 mm, and negative precision: −0.658 mm. Thus, iteration
5 was not included in the kidney’s final Pareto front. Figure 3a
(prostate model) and Figure 3b (kidney model) show how hyper-
volume indicators increased with the corresponding increase of
iteration numbers, demonstrating convergence regarding hyper-
volume, which signifies better solution sets.

It is apparent that the application of the BO algorithm in the
prostate model had explored a large amount of objective space
during the first few iterations from iteration 1 to 5, which allowed
for a large hypervolume indicator per the corresponding itera-
tion range (Figure 3a). As a result, subsequent exploration and
optimization led to a smoother hypervolume graph that began
to plateau since there was less space to optimize. On the other
hand, when the BO algorithm was applied to the kidney model,
the hypervolume indicators between iterations 1 and 25 received
notable increases as the iterations progressed (Figure 3b). This
led to a rougher hypervolume graph during the aforementioned
iteration range as the BO algorithm sporadically optimized and
explored the objective space. However, after iteration 25, it was

observed that the hypervolume graph started to smoothen out
and reached a plateau. Therefore, the hypervolume graphs for
both organ models displayed a smooth line at the concluding it-
erations when the convergence was reached, and subsequent iter-
ations would minimally impact the hypervolume as an optimized
set of solutions was established.

Analysis of each organ model’s final Pareto front provides valu-
able insights into the fundamental trade-offs involved in optimiz-
ing each output objective. The Pareto front describes a collection
of optimal input solution sets. Within the Pareto front, each indi-
vidual solution set holds Pareto dominance, signifying their su-
periority over the other input solutions situated outside the front.
These Pareto dominant solution sets possess an advantage over
the non-dominant input solutions in terms of one or more out-
put objectives, while simultaneously maintaining a standstill in
the remaining objectives. Moreover, it is important to note that
specifically each Pareto front solution set holds an equal degree
of dominance over each other, as they possess an equivalent num-
ber of advantages. Here, it was observed that the Pareto front
for both the prostate and kidney models evolved (Figure 3c,d)
through various printing iterations (selected iterations 10, 20, 30,
40, 50, and 60). This evolution was influenced by the Pareto dom-
inance of each newly generated solution, which led to alterations
in the size of the Pareto front at varying iteration. In the Pareto
front for the prostate model, the number of solution sets within
the Pareto front generally stayed above or equal to 7 between iter-
ations 10 and 40 (Figure 3c). However, some of the solution sets
throughout the Pareto front during this range were either newly
added or removed, signaling that convergence had not been fully
reached yet. Between iterations 40 and 50, many of the Pareto
front’s solution sets were removed due to the addition of new so-
lution sets that were highly dominant, reducing the size of the
Pareto front. It was observed that between iterations 50 to 60, the
only change in the Pareto front was the removal of solution set
5, demonstrating an optimized set of solutions. For the kidney’s
Pareto front (Figure 3d), a different trend was observed. Between
iterations 10 to 60, the number of solution sets within the Pareto
front only increased, with the removal of a few solution sets from
the starting iterations. This indicated that many of the previous
and additional solution sets within the Pareto front were uniquely
dominant in output objectives, which developed a diverse Pareto
front. Nonetheless, between iterations 50 to 60, the Pareto front
did not receive any changes and exhibited convergence to an op-
timized set of solution.

The prostate model’s final Pareto front, denoting the Pareto
front present at the concluding iteration, contains 5 input solu-
tion sets with differing advantages and disadvantages (Figure 3e
and Table S1, Supporting Information). In the solution set of iter-
ation 3, a slight advantage was observed in terms of printing time
compared to the remaining solutions in the final Pareto front.
However, this advantage was countered by inferior performance
in other objective areas. On the other hand, the solution set of
iteration 17 achieved the best positive precision measurement,
however, suffered substantially in terms of its negative precision
value due to under-extrusion. In contrast, each solution set at it-
erations 42, 46, and 56 (Figure 3e and Table S2, Supporting Infor-
mation), exhibited robust values in all output areas, though these
values were slightly dominated in one or two specific areas. For
instance, when compared to solution sets of iterations 7 and 17,
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Figure 3. Analysis of the progression and dominance of input solution sets over ≈60 iterations. a,b) Measurements of hypervolume, which refers to the
quantity of objective space covered by input solutions, for the prostate model and kidney model, respectively. c,d) Table of input solution sets within the
Pareto front at varying iterations for the prostate model and kidney model, respectively. e,f) Table of input solution sets within the final Pareto front and
their individual values regarding the inputs and corresponding output values, for the prostate model and kidney model, respectively. (Iterations 42, 46,
56 (bold) in Figure 3e yielded the most optimal prostate models and iteration 52 (bold) in Figure 3f yielded the most optimal kidney model).

all three of the previously mentioned sets had marginally worse
time and positive precision values, respectively.

Conversely, when comparing the final Pareto fronts of the kid-
ney model and the prostate model, moderate differences were
observed in terms of diversity and size (Figure 3f). The kid-
ney model’s Pareto front consisted of 12 distinct solution sets,
whereas the prostate model’s Pareto front was relatively smaller.
This distinction arose from a lower degree of Pareto dominance,
perceived across the entire spectrum of solutions. For instance,
the solution set of iteration 8 came closest to achieving an optimal
positive precision value and had a decent negative precision value

but encompassed a subpar porosity. Noticeably, the solution set
of iteration 52 appeared to display the most optimal time value
while maintaining adequate measurements in all other aspects.
Similarly, the solution set of iteration 49 also presented the best
time value while holding a slight advantage over the solution set
of iteration 52 regarding negative precision. However, the solu-
tion set of iteration 49 experienced drastic shortcomings in the
remaining parameters. Another particular highlight is the solu-
tion set of iteration 25, which achieved a nearly perfect porosity
value. Nevertheless, it is hindered by an extended time value and
a slightly higher positive precision value.
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It is essential to recognize that the optimized 3D printing set-
tings can vary significantly depending on the specific object being
printed. In this study, our objective was to determine the optimal
configuration specifically for presurgical organ models. Unlike
standard ML tasks, which aim to train a predictive model that
generalizes to unseen inputs, the primary goal of BO is to iden-
tify the optimal solutions for a predefined set of target objectives.
The training process in BO was designed to facilitate the iden-
tification of these optimal configurations. The primary focus of
our study was not to conduct an exhaustive validation across a
wide range of scenarios and materials, but rather to establish the
effectiveness of our optimization algorithm within a controlled
experimental setting which allowed us to showcase the practical
application of our method.

Additionally, our multi-objective BO algorithm was designed
to be broadly generalizable, capable of adapting to various mate-
rials and achieving robust results across other disciplines with-
out extensive modifications to the core algorithm. In practice,
adjusting the specific output parameters and input space is nec-
essary due to material-specific and object design requirements.
These requirements often arise from different materials and de-
signs interacting with the 3D printer in unique ways, requiring
a distinct set of printer settings to achieve an optimal result. For
example, we used customized ink with an 8:4.5 weight ratio of
silicone sealant to silicone grease as our printing material. Three
possible scenarios based on material or design requirements are
described as follows: 1) Suppose we wanted to print a mimicked
brain tissue model using an ink with lower mechanical proper-
ties; it would become imperative for us to increase the amount
of silicone grease in the ink. Consequently, since silicone grease
is significantly less viscous than silicone sealant, our input space
would drastically change as it represents the set of all reasonable
3D-printing configurations. The ink’s lower viscosity would allow
for a decreased dispensing pressure range, both at the lower and
upper bounds, since less viscous ink flow out quickly. 2) Mean-
while, if our goal was to print a thin tissue such as gastric mucosa
(stomach lining), which typically measures between 1 to 1.5 mm
in thickness, a set of smaller nozzle diameters for our input space
would be more suitable. For example, utilizing our current input
space, consisting of larger nozzle diameters ranging from 0.33 to
0.61 mm, would result in inferior printing results since it would
be difficult to print such a thin design accurately. Therefore, it
would be impossible to find an optimal set of 3D-printing con-
figurations within the search space. Instead, it would be appro-
priate to use a nozzle diameter range between 0.1 and 0.2 mm.
3) In the case of printing the tongue, it would be valuable to in-
clude texture as one of the output parameters. Texture can be
characterized as the average surface roughness by using an opti-
cal profilometer. The measured values would be numerical, sim-
ilar to the current output objectives. Specifically, they represent
the mean of the absolute values of the surface height deviations
calculated from the reference line over a given length. The refer-
ence line goes through the mean height of the surface’s bumps
and valleys. Thus, we would be able to optimize for the tongue’s
tiny bumps (papillae) located at its surface.

Hence, we have shown that our multi-objective BO has proven
highly effective in optimizing expensive-to-evaluate objective
functions regarding optimizing 3D-printing configurations, sur-
passing traditional methods. Existing optimization techniques in

the field often require substantial computational and physical lab
resources and frequently underperform when compared to our
proposed multi-objective BO approach. The EHVI algorithm we
utilized is not only computationally efficient but also straightfor-
ward to implement, making it an excellent choice for interdis-
ciplinary applications. Given the constraints on both time and
financial resources, we prioritized our budget to conduct experi-
ments on additional presurgical organ models rather than bench-
marking against other baselines. This decision allowed us to bet-
ter demonstrate the versatility and practical applicability of our
method. By focusing on these experiments, we provided a com-
pelling validation of our algorithm’s performance in real-world
scenarios.

Practitioners looking into implementing our techniques in
real-world scenarios will benefit from considering ways to au-
tomate our steps, thus achieving even greater time and labor
efficiency. For example, the primary hardware component used
in our image processing was a camera. This step could be au-
tomated with a device that either spins the desired 3D-printed
object or camera in 360 degrees and uploads the recorded data
to our software. Nonetheless, complete automation necessitates
custom-built hardware, providing a potential challenge. In gen-
eral, practitioners face challenges regarding time and financial
costs due to resources and the nature of optimization problems.
However, these challenges widely depend on the practitioner’s in-
tent. In our study, the ink used did not pose a financial difficulty.

3. Conclusions

In summary, we developed a four-step, principled methodology
for generating the optimal solution set that aims to define key
input parameters, which can be applied to DIW 3D-printing for
presurgical organ models and other functional devices. Our use
of BO allows us to efficiently search through the large input space
and visualize the trade-offs between each solution set with the
Pareto front. Our final Pareto front for the prostate model pro-
vides a set of three input solutions that are exceptionally optimal.
Although the kidney model seemed to perform slightly worse re-
garding precision, the reason is due to the kidney’s small details
regarding its vessels. However, it is essential to highlight that
had we employed larger models for both the prostate and kid-
ney, the precision values would likely have shown superior perfor-
mance relative to their sizes. This correlation is due to precision
being primarily influenced by external geometry. Nevertheless,
our capability to consistently generate optimal models with high-
fidelity, provides a proof of concept that can be applied to other
disciplines. The outcome of this work paves the way for optimiz-
ing input and output parameters that pertain to manufacturing
functional devices and structures for a variety of desired proper-
ties, such as drag force, texture, and mechanical properties. Thus,
we can further refine the accuracy and utility of our models, mak-
ing them valuable tools for a wide range of applications beyond
what we have explored in this study.

4. Experimental Section
Customized Polymeric and Supporting Ink Formulation for 3D-Printing:

The printing ink compound was formulated with a bulking agent: silicone
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grease (#LP20, Trident), active agent: silicone sealant (Loctite SI 595 CL
with acetoxy-curing and room temperature vulcanization), and coloring
solution: red coloring agent (Procyinyl Red GS, ICI America Inc.) com-
bined with dichloromethane (DCM) solvent. The weight ratio of the bulk-
ing agent to active agent for the ink was 4.5:8 (w/w). The coloring solution
contained 0.5 mL of DCM and 1% (w/v) coloring agent with a 25:1 (w/v)
ratio to the total silicone component (12.5 g). All three substances were
mixed via a centrifugal mixer (ARE-310, Thinky) at 2,000 rpm for 8 min.
The supporting ink consisted of Pluronic 127 (Sigma–Aldrich) diffused in
a glycerol/deionized water solution (1:9 v/v) with a 2:5 (w/v) ratio and pro-
vided temporary structural assistance for overhanging and complex model
features.[4]

Mechanical Properties of the Customized Ink: It was printed multiple
cylinders using the specified ink, each with a diameter and height of
10 mm. To evaluate their mechanical properties, these cylinders to a static
compression test using specialized mechanical testing equipment (In-
stron 600DX) was subjected. During the test, a load cell with a capacity of
50 lbs was utilized and traveled a distance of 9.5 mm downwards (within
the travel limit of the machine) at a controlled rate of 0.5 mm −1s. The
focus for data collection was on the initial deformation behavior occur-
ring at the strain range between 0.00 and 0.20, which corresponds to a
stress range of 0 to 100 kPa. By carefully analyzing the linear correlation
between stress and strain within this specified range, the Young’s modulus
of 407.5 Pa was determined for the customized ink material.

BO Surrogate Model: The acquisition function uses the surrogate
model of the figure-printer setting relationship f̂(x) to decide which printer
setting to evaluate next while striking a balance between exploitation and
exploration. The BO surrogate model was a probabilistic model of the
shape-printer setting relationship f(x) trained on all available observations
{(xi, yi = f(xi))}i = 1, …, n from past experiments. Typically, the surrogate
model treats f(x) as a random variable that follows a Gaussian distribu-
tion f (x) ∼ N(ŷ(x), 𝜎2(x)) With mean yˆ∈ ℝ and variance 𝜎2 ∈ ℝ. The
surrogate model reflects the current beliefs about f(x) and serves two pur-
poses in BO. First, in order to guide exploitation, ŷ(x) cheaply estimates
the properties of the remaining, unevaluated printer settings as ŷ(x) is a
cheap-to-evaluate approximation of the expensive objective function f(x).
Second, in order to guide exploration, 𝜎2(x) quantifies the uncertainties
in the predicted printed figure properties of the unevaluated printer set-
tings. This uncertainty estimate makes us aware of “blind spots” of the
surrogate model; These spots were regions in the printer setting space
that it was need to explore to improve the approximation of ŷ(x) and re-
duce the uncertainty in this beliefs about f(x). The surrogate model was
updated every time new data points in the form of input-output pairs
(xn + 1, yn + 1 = f(xn + 1)) were observed. This update process was cru-
cial as it continually refines the model’s understanding of the objective
function as the mean function ŷ(x) is updated to incorporate the newly
observed data, and the variance 𝜎2(x) is adjusted accordingly. This pro-
cess ensures that the GP model adapts to the known data and improves
its approximation of the expensive objective function after every iteration
while still capturing the uncertainty in unexplored regions of the input
space.

BO Acquisition Function: To determine where to sample the objective
function, BO employs an acquisition function. The acquisition function
AF(x; f (x)) : X → ℝ scores the utility of, next, evaluating printer setting
x ∈ X with the expensive objective function f. Here, “utility” was defined
in terms of the ultimate goal of finding the optimal set of printer settings
for printing the selected model defined as x*, with the fewest experiments.
The acquisition function employs the prediction of the property ŷ(x) and
the associated uncertainty 𝜎2 from the surrogate model f̂(x) to assign a
utility score to the printer setting that balances exploitation and explo-
ration, respectively. Maxima of the acquisition function were located in
regions of printer setting space where the predicted property was large, or
the uncertainty is high. Some of the commonly used acquisition functions
in BO were the Expected Improvement (EI),[57] Upper Confidence Bound
(UCB),[58] and Thompson Sampling (TS).[59] The EI acquisition function
measures the expected improvement in the objective function value over
the current best-known optimal point fopt, at a given point x.

BO Acquisition Function Optimization: The decision of which printer
setting to evaluate next is made by maximizing the acquisition function:
xn+1 = argmaxx ∈ X∖Xn

AF(x, f ∧n (x)) xn + 1 where Xn = {x1,…, xn} is the set
of n printer settings that have been evaluated already. Importantly, the ac-
quisition function must be cheap to evaluate and optimize. BO proceeds
iteratively through these key steps. First, the GP model was updated with
observed data. Then, the acquisition function was optimized to select the
next sampling point that maximizes it. Subsequently, the expensive objec-
tive function was evaluated at the chosen point, and the new data point
was added to the observed data. This iterative loop continued until a pre-
defined stopping criterion, such as a maximum number of iterations or
convergence threshold, was met.

Multi-Objective Optimization: Without loss of generality, MOO was
defined as the problem of maximizing K ≥ 2 real-valued objective func-
tions {f1(x), …, fK(x)} over the given printer setting parameter space X ⊆

ℝd where d is the number of decision variables and each decision vari-
able’s boundaries were pre-defined by an expert domain practitioner with
respect to its corresponding feasible printer setting. A printing experi-
ment with candidate printer setting parameters x ∈ X generated a vec-

tor consisting of objective values y =
(

yf1 ,… , yfK

)
where yfj = fj(x) for

all j ∈ {1, …, K}. The goal of this MOO problem was to find a set of de-
cision variables X* that maximize the vector of objective functions f(x*)
while respecting the boundaries of the decision variables without Pareto-
dominating each other. The input vector x Pareto-dominates another input
vector x′ if fj(x′) ≤ fj(x) ∀ j and there exists some 𝑗 ∈ {1, · · ·,} such that
fj(x′) < fj(x). The optimal solution of the MOO problem is a set of input
vectors X* ⊂X such that no configuration x′ ∈ X∖X* Pareto-dominates
another. The solution set X* is called the optimal Pareto set and the cor-
responding set of function values Y* is called the optimal Pareto front. The
most commonly used measure to evaluate the quality of a given Pareto set
is by calculating the Pareto hypervolume (PHV) indicator[60] of the corre-

sponding Pareto front of
(

yf1 ,… , yfK

)
with respect to a reference point

r. The overall goal was to approximate the Pareto set X* by minimizing
the total number of expensive function evaluations. The Pareto Front (PF)
was defined as PF = {x ∈ X | ∄ x′ ∈ X, x′ ≠ x, such that ∀k, fk (x′) ≤
fk (x) and ∃m fm (x′) < fm (x)}. A solution x belongs to the Pareto front if
there was no other feasible solution x’ in the decision space X that can si-
multaneously improve or equal all M objectives compared to x and strictly
improve at least one objective.

3D-Printing Problem Setup: Suppose a 3D printer with a large num-
ber of different combinations was had, how it could adjust its settings for
printing an organ. Let f: X → R be a black-box objective function that,
given a specific setting on the printer x ∈ X, returns a relevant property
of the printed shape y = f(x). Each evaluation of f corresponds to per-
forming an expensive experiment -in terms of time and the value of the
printing material- to measure the printing time, precision, and porosity
y of printer setting x. This goal was to find the highest-performing set of
setting X* from X that maximize the PHV indicator while conducting the
fewest number of expensive experiments. It could interpret f(x) as the un-
known printer setting-shape relationship since x represents a unique set-
ting on the printer, and evaluating f means conducting an experiment to
measure its property, y. Suppose a 3D printer with a large number of dif-
ferent combinations was had, how it could adjust its settings for printing
an organ. Let f: X → R be a black-box objective function that, given a spe-
cific setting on the printer x ∈ X, returns a relevant property of the printed
shape y = f(x). Each evaluation of f corresponds to performing an expen-
sive experiment -in terms of time and the value of the printing material-
to measure the printing time, precision, and porosity y of printer setting x.
This goal was to find the highest-performing set of setting X* from X that
maximize the PHV indicator while conducting the fewest number of ex-
pensive experiments. It could interpret f(x) as the unknown printer setting-
shape relationship since x represents a unique setting on the printer, and
evaluating f means conducting an experiment to measure its property, y.
GPs were a powerful tool in ML and optimization that can be used as
surrogate models in various applications, including the 3D-printing opti-
mization problem. GPs serve as a versatile framework for characterizing
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stochastic processes with joint Gaussian distributions across any number
of input locations. Essentially, GPs provide probability distributions over
functions, enabling the generation of function samples from them. In the
case of this 3D-printing MOO problem, GPs play a pivotal role by modeling
the objective function as a sample drawn from the GP. The non-parametric
nature, adaptability, and resilience of GPs make them well-suited for hy-
perparameter estimation, avoiding overfitting even with limited data. In
the absence of any observed data, GPs can serve as a prior, allowing the
generation of smooth functions without the need for prior observations.
According to the GP prior, a function’s potential values at any given input
location are characterized by a mean (typically zero) and a standard devi-
ation. GPs to predict the behavior of black-box functions based on a small
number of observations was used. Given a set of printer settings, and the
corresponding printed shape’s output values, a GP to predict the output
value for a new unobserved printer setting was used. Gaussian Processes
GP1,⋅⋅⋅, GP4 for the four objective functions corresponding to time, shape
precision, and shape porosity from the training data in the form of past
printed figures was built. These statistical models can predict the output of
unknown printer settings and also quantify their uncertainty for those pre-
dictions. In each iteration of this algorithm, the learned statistical models
were employed to select the next candidate printer settings for evaluation
via printing a new figure.

Expected Hypervolume Improvement Acquisition Function: To formally
define, Given a reference point, r ∈ RK the hypervolume indicator of a fi-
nite approximate Pareto set P is the M-dimensional Lebesgue measure 𝜆K
of the space dominated by P and bounded from below by r : HV (P, r) =
𝜆K (U|P|

i = 1[r, yi]) where [r, yi] denotes the hyper-rectangle bounded by ver-
tices r and yi. Considering the definition of the hypervolume the hyper-
volume improvement (HVI) was defined. Given a Pareto set P and refer-
ence point r, the HVI of a set of points Y is HVI (Y, P, r) = HV(P∪Y, r) −
HV(P, r). EHVI was defined as the expectation of HVI over the poste-
rior distribution P(f, D) over the true function values f given the ob-
served data DError! Bookmark not defined. Mathematically, it is defined
as 𝛼EHVI(Xcandidates) = E[HVI(f(Xcandidates))]. EHVI was a way to measure
the potential benefit of adding a new candidate solution to the existing set
of non-dominated solutions in MOO. It quantifies how much the hyper-
volume of the Pareto front was expected to improve when the new solu-
tion was added, helping the optimization algorithm focus on areas of the
objective space that were not well-covered by the current solutions. In or-
der to solve the aforementioned problem, a multi-objective BO method
using GPs as surrogate models and the EHVI acquisition function was
proposed. The algorithm requires a meticulous formulation of the MOO
problem that was germane to the ML application. To prevent the selection
of infeasible printer settings during the BO exploration, it was first estab-
lished a feasible input space for printer settings defined by expert domain
practitioners. The BO method will then select optimal points from within
this defined space. Following the formulation of the optimization problem,
the method proceeds with the selection of an initial set of printer settings.
This set of initial samples are generated by random selection. These ini-
tial samples serve as the foundational dataset upon which the initial GP
models are constructed for each expensive black-box objective function.
As the surrogate models, was used Gaussian Processes. To aptly encap-
sulate the intricate nature of the objective functions, the Matérn 5/2 kernel,
renowned for its adaptability, was utilized as the GP kernel. The GPs were
trained using the initial points and the objective values calculated from
the printed shape. All values were min-max normalized at the beginning
of the algorithm and after each iteration to decision variable boundaries
pre-defined by domain experts. The optimization process proceeds itera-
tively, with an initial empty set symbolizing the Pareto front. Consequently,
this Pareto front was updated as the optimization process unfolds. Guided
by the EHVI acquisition function, candidate solutions were systematically
selected. The EHVI function strikes a balance between exploration, which
encourages the exploration of uncertain regions, and exploitation, which
evaluates potential improvements in the objective space. The EHVI acqui-
sition function was calculated on all points in the input space, and then
it was optimized to select the next candidate point. The selected candi-
date solution was then assimilated into the evolving Pareto front. Subse-
quently, the GP models were updated with the newly acquired data point,

thus refining the probabilistic predictions for the objective functions. This
iterative process persists until it was saw convergence in the results.
A pseudocode of the method was included in (Supporting Information
Algorithm S1).

Determining the Input Parameters and Space: The input parameters
include layer height, nozzle travel speed, and dispensing pressure (sup-
porting ink excluded) which greatly influences the printed model’s out-
put in multiple areas such as geometry. The input space for each tested
model through printing cylinders of 10 mm diameter and 10 mm height
with varying input parameters per nozzle with inner diameters of 0.33 mm,
0.41 mm, 0.51 mm, and 0.61 mm (including the following categories) was
determined. Each nozzle had a unique layer height range (mm) and dis-
pensing pressure (kPa) range in response to the selected speed of [0.26,
0.33] and [285.0, 470.0], [0.34, 0.41] and [211.0, 345.0], [0.42, 0.51] and
[125.0, 250.0], and [0.52, 0.61] and [98.0, 179.0], respectively. The nozzle
travel speed range of 4.0 mm −1s to 15.0 mm −1s was consistent among
all nozzles. The input space was suitable for all types of models using the
specified ink.

Determining the Output Parameters and Space: The output parameters
include time, porosity, positive precision, and negative precision which
provide valuable metrics in determining the model’s efficiency and fidelity.
Time represents the length of the 3D-printing process and was measured
from when the printhead first traveled to when it fully stopped. Porosity
refers to the voids within the printed model that affect its mechanical prop-
erties and was measured through calculating the mass difference between
the print and ideal model. The ideal weight for each model to be 3.767 g
through multiplying the STL volume (≈3711 mm3) by the density of sili-
cone sealant (1.015 g mm3) (Loctite SI 595 CL) was calculated. Although
the density of silicone grease (≈1.0 g mm3) (#LP20, Trident) slightly varies
from silicone sealant, it minimally affects calculations. Positive and neg-
ative precision determines the overall geometric fidelity of the print and
the amount of over/under extrusion. Precision (mm) was measured as
an average distance between the surface of the printed and ideal model
through image processing via Nvidia’s NeRF A.I. and 3D registration via
CloudCompare. The output space was determined through testing individ-
ual edge cases for each parameter regarding the lower and upper bounds.
Since the BO algorithm was designed for maximization, where larger val-
ues were more desirable, each output value was made negative (partial
negative data in time, porosity and positive precision have been adjusted
in the Tables S1 and S2, Supporting Information for better understanding).
The prostate model’s boundaries for the output space were time: −360 to
−10 min, porosity: −20 to 0 g, positive and negative precision: −20.0 to
0 mm. These boundaries were heavily expanded to account for outliers
resulting in a longer BO computational time. For the second experiment
using the kidney model, we implemented a tighter range for each param-
eter being time: −230 to −37 min, porosity: −4 to 0 grams, positive and
negative precision: −4 to 0 millimeters, which allowed the BO calculations
to run significantly quicker.

Organ Model 3D-Printing: The human prostate STL model was
patient-specific and developed via Vitrea software with MRI image data.[3]

Conversely, the kidney STL model was obtained from RenderHub, and
provided a general anatomical representation of a human kidney’s sur-
face features with partial inclusion of the renal vein/artery and ureter for
added geometric complexity. Each model was scaled down to 50% of the
prostate model’s volume (prostate: 22.22 (L) x 20.66 (W) x 17.74 (H) mm3,
kidney: 29.85 (L) x 20.82 (W) x 12.37 (H) mm3) to increase printing effi-
ciency. The STL models were sliced into horizontal layers (Figure 2b) via
Slic3r, an open-source software, to produce a 3D-printing programing lan-
guage (G-code) which determined the printing pathways. The G-code was
entered into a customized 3D-printing system (AGS1000, Aerotech), fit-
ted with two independent z-axis heads, which held two ink syringe bar-
rels (Optimum, Nordson EFD) individually containing the supporting and
polymeric ink. The rate of deposition was dictated by two high-accuracy
dispensers (Ultimus V, Nordson EFD). Precision nozzles (Nordson EFD)
with inner diameters of 0.33 mm (23 GA GP.013X.25), 0.41 mm (22 GA
GP.016X.25), 0.51 mm (21 GA GP.020X.25), and 0.61 (20 GA GP.023X.25)
were used to print layers with heights ranging from 0.26 mm to 0.61 mm
respectively. After the printed model has been fully cured in room
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temperature, the supporting ink was separated from the model via water
flushing at 4 °C.

Image Processing for Organ Models: In order to capture the geometry of
the 3D-printed organs to develop a model for comparisons, an image pro-
cessing approach was used. First, a 360° video recording was taken of the
printed model and reconstructed with Nvidia’s open-source, A.I. neural
radiance field (NeRF) to generate a mesh object that is composed of poly-
gons and vertices.[61] Within the NeRF program, the model would be iso-
lated from its surroundings with the crop box feature. The exported mesh
was then smoothened and re-meshed for full solidification with Blender,
an open-source software. However, distinct features caused by under/over
extrusion remained present. The final prostate and kidney mesh gener-
ally contained between 50 000–600 000 faces and vertices, with 100 000–
1 200 000 triangles. The substantial range was because each model con-
tained unique complex features from varying input parameters. Although
the ideal prostate STL has a singular, hollow urethra channel, capturing the
internal geometry was unfeasible as the NeRF program could only capture
the surficial concavity of the channel opening. Therefore, the ideal prostate
model’s inner channels were filled via Blender and accurate concavity was
demonstrated. The ideal prostate model was exported as a mesh object
which contained 477186 vertices and faces with 954368 triangles. The kid-
ney STL does not have this limitation, and the original mesh object was
used for printing and comparisons. The kidney mesh contained 3656 ver-
tices with 7296 vertices and triangles.

3D Registration for Geometric Precision: To measure the positive and
negative precision values, a 3D registration procedure was executed to
develop a histogram and a map of calibrated distances (mm) between
points on the exterior of the printed model’s scaled mesh object and ideal
organ mesh object, for surface comparisons. CloudCompare, an open-
source software, was utilized for this procedure. For the prostate and kid-
ney model, a total of 50 000–200 000 and 500 000–1 000 000 surface points
were compared respectively. For each point on the printed organ model,
a comparison was made with its nearest counterpart on the ideal model,
measuring the distance between them. The resulting histogram of cali-
brated distances was divided into two separate histograms: one contain-
ing only positive values and the other containing purely negative values.
The average distance value of each individual histogram was used for pos-
itive and negative precision respectively. To align with the maximization
objective of the BO algorithm, the negative absolute value was applied to
the precision values. For the prostate model, the greatest positive and neg-
ative precision value achieved was −0.144 and −0.266 mm respectively.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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